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triangular lattice gas is examined as a model 

for ordering of Li+ ions in intercalated transi~ 

tion metal dichalcogenides. A three~sublatt e Bragg~ 

Will ( approximation) calculation illustrates 

me the features in the incremental capacity 

versus concentration curves: (a) minima are associated 

structures, (b) sharp maxima (divergences) 

are caused stence of ordered and disordered 

es over small concentration intervals and (c) smooth 

max can be found at concentrations of no direct rel-

evance to o~dering. 
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1. INTRODUCTION 

A triangular lattice gas model for the problem of ordering 

of Li+ ions in the system LixTiS 2 was recently proposed by 

Thompson\)/and studied by Berlinsky et al.~through a renor~ 
malization group calculation. In this and the following\0/ 

paper (hereafter referred to as II) we use Kikuchi's\JI cluster~ 
' 

variation method to explore the problem further, including 

a discussion of the effects of three~body potentials on 

thermodynamic functions and on the order~disorder phase diagram. 

Lithium has been intercalated into the layer~d transition­

metal dichalcogenides\Y (represented by MX 2 , where M is a 

transition metal and X a chalcogen) to form compounds of the 

type LixMX 2 (O~x~l), that have found use as cathodes in bat­

teries. The system LixTiS 2 has been particularly successful~ 
due to its reversibility and rapid lithium self-diffusion. 

In LixTiS 2 , Li+ ions reside between two TiS 2 layers, at 

sites which make themselves a two~dimensional triangular 

network (these are the octahedral sites found between the 

two~dimensional triangular layers of sulphur, each S layer 

belonging to a different S~Ti-S sandwich). The practical 

uses of this material have prompted a large number of exper-

· ' 5- 9/· 1 d' h · 1 1 h · 1 d 1 lments 'v/ lnc u lng c emlca , e ectroc emlca an nuc ear 

magnetic resonance studies. 

Thompson\Yhas performed accurate measurements of the 

voltage y versus concentration ~ relationship in the elec-

trochemical cell where Li TiS~ is produced. The 
X L 

a showed 

well defined peaks in the inc~emental capacity ( ax/aV) at 

constant temperature, the main peaks appearing at x=l/9, 



l/4 and 6/7. Thompson suggested that these peaks are 

as soc ed with the formation of two~d ional ordered 

tices of L., + ' t th t t. ~ lons a - ose concen ra 1.ons. 

experiments were performed in a Li-electrolyte-

LixTiS 2 cell and the measured voltage gives the difference 

between the chemical potentials of the Li+ ion in the LixTiS 2 

cathode and the anode. If the Li anode lS cons ered a 

+ res , the voltage V is given by 

!e!V = constant ~ ~l (1.1) 

where ~l lS the Li+ chemical potential ln LixTiS 2 • The value 

of ~l ls determined by a variety of factors: lattice dis­

tortions, lattice vibrations, electron screening, etc. The 

ff- ' b h . + L. + b ~ e ect however ls caused y t e Ll - l Coulom repu~-

s1.on and by the resultant collective effects. The nearest-

neighbor interaction is the dominant part of the energy, 

since the repulsion between two ions is screened by the 

electrons in neighboring 

In this paper we study the phase diagram of a lattice 

icles eracting through a nearest-neighbor 

repulsion in a triangular arrangement. The problem has been 

previously investigated by the Bethe-Peierls method\Y, a 

' 1 ' f. d t . 1 1 t ' ' \ly - ' ' s1mp.1 1.e r1ang e c user approx1.mat1on \ , renormal1zat1on 

. ~2,12/ d M C . \13/ te 1ques ~ an a . onte- arlo calculat1on \/ , 

In this paper we show that a model as simple as a gener­

alized Bragg-Williams~Jiapproximation (equivalent to 

Kikuchi's model with points as the basic clusters) for three 

lattices gives the correct physical picture for exper1-

mental features the (-ax/aV)-versus-x curves for systems 



like LixTiS 2 . A better approximation lS used 1n II. Our 

lation is presented in Section 2 and the Appendix. A 

discussion of the results is the subject of Section 3. 

2. CALCULATION 

As illustrated in Figure 1, the triangular lattice lS 

divided into three interpenetrating sublattices, a, 8, and 

y, such that any site in one of them, say a, has three 

nearest neighbors in each of the other two sublattices, B 

and y. This representation can b'e justified by t'he work of 

Kanamori and Kaburagi~~ who found the ground~state 

structures for the triangular lattice gas with various pa 

wise interactions. In our notation, for nearest~neighbor 

repulsions only, we have the following equilibrium conf 

urations: for x= the a sublattice full, n =1, with 
a 

empty 8 andy sublattices, n
8

=ny=O; for x= 2A the a and B 

sublattices full, na=n8=1, and the y sublattice empty, ny=O. 

We define by n (v=a,S,y) the probability that a lattice v 

site of sublattice v is occupied by an ion. We thus have 

X = (n +n
0

+n ) 
a ~-' Y 

If there are N sites 1n the· lattice, the interact:·: .. _m 

energy is dpproximated by 

where U is the nearest-neighbor interaction energy (U>O). 

The entropy is taken to be the sum of the Bragg-Williams 

entropies for the three sublattices: 

( 2. 1) 

( 2 • 2 ) 



(N/3)! 
S = kB L ~n (Nn /3)![N(l-n )/3]! 

v v v 
( 2' 3) 

In both Equations (2.2) and (2.3) short-range correlations 

between the sites are ignored. 

The temperature T and the free energy 

hereafter expressed in the dimensionless forms 

T = F 
f = NU 

are 

The use of Stirling's approximation in Eq. (2.3) yields 

for the reduced free energy the result 

f = 

+ ~3 I [n ~n n +(1-n ) ~n (1-n )] v v v v v 

( 2. 4) 

( 2 • 5) 

Because of the constraint ln Eq. (2.1) only two of the 

three sublattice probabilities nv, say na and n
8

, should be 

considered as independent variables for a given concentration 

x. The equilibrium configuration of the lattice gas (i.e., 

the values of n , n 0 and n ) can be found for given values of 
a ~-> y 

~and T by minimizing fin Eq. (2.5) with respect ton and 
a 

n
8

. The reduced chemical potential 

( 2 . 6 ) 

is then glven as the derivative (8f/8x). 

An alternative method is to consider ~ as the thermodyna-

mlc parameter instead of x. Now the three sublattice proba-



bilities are independent variational parameters for the 

minimization of grand potential 

The concentration xis obtained from Eq. (2.1) after n 

has been minimized. 

Although both methods are mathematically equivalent, 

they are for convenience applied to different regions of the 

(x,T)plane to obtain a phase diagram. The procedure is described 

' 
in the Appendix and the phase diagram 1s shown in Figure 2. 

The complete phase diagram displays a mirror symmetry around 

the line x=~. This is a consequence of the pairwise, conce-

tration~independent nature of the assumed interactions, 

leading to a particle~hole symmetry, which is translated by 

the relations 

(2.7a) 

and 

n (x=x ) = 1 - n (x=l~x ) 
8 0 s 0 

( 2. 7b) 

It can then be readily shown that 

( 2. 8) 

( 2. 9) 

and 

(ax) ~(ax) 
~ x=x - a~ x=l~x 

0 0 

(2.10) 



~7 

These relations are not actually satisfied for the system 

s 2 but they seem to be 

sequence "\Y Lix TayTil~ys 2 , 
a good approximation for the 

with 0.3'5.y:_0.5. In Li TiS 2 , the 
X . 

eraction between two + ions must depend on the concen~ 

tration, due to the increasing donation of electrons to 

the TiS 2 conduction band. 

3. RESULTS AND DISCUSSION 

The different regions in the complete phase diagram are: 

the disordered phase (3). where n =n =n · two ordered phases ' a 8 y' 

(12) and (21), where one of the sublattice probabilities is 

different from the other two; and the ordered phase (111), 

where the three probabilities are different. 

A physical insight into the meaning of the different 

phases may be gained by considering the behavior of the lat-

tice gas at T=O. The reduced free energy is then given by 

the broken line in Figure 3. If we lncrease the concentra~ 

tion of occupied sites, only the a sublattice is being filled 

in the interval O<x<l/3, where n =3x, n
13

=n =0. The i3 sublat~ 
a Y 

tice is filled in the interval l/3<x<2/3, where na=l, ns=3x~l, 

n =0. Finally the y sublattice is filled in the interval y 

2/3<x<l, where n =n
13
=l, n =3x-2. Thus at T=O, for l/3<x<2/3 a Y 

the system is in the (111) phase; otherwise it is in the (12) 

or the (21) phase. As the temperdture increases, the entropy 

term in the free energy reduces the range existence of the 

(lll) phase and induces the appearance of a completely dis~ 

ordered phase (3), which emerges from the x=O and x=l extremes 



of the allowed range of concentrations and occupies the whole 

concentration range when the reduc temperature exceeds the 

critical value T =3/4, c 

The zero~temperature picture discussed above is only 

valid in the present mean~field approximation, where an 

ordered phase is required to avoid nearest~neighbor pairs. 

In II, however, we show that short~range correlations can 

actually lead to long~range disorder even at T=O. 

The phases (3) and (12) are connected by a first~order 

phase transition; the phases (12Y and (111) are donnected 

by a second-order phase transition. For a given t<t there c 

is a small interval of values of x in each half of the phase 

diagram where the phases (3) and (12) coexist in a hetero~ 

geneous mixture. In this region f is a linear function of 

~' defined by the common tangent to the f-versus-x curves 

for the phases (3) and (12), and both the chemical potential 

and the grand potential are const~nt. The incremental capac-

ity (-6x/6V) is given in our dimensionless units by (8x/6~). 

At t=O this function is zero at x=O, 1/3, 2/3, 1, and infinite 

otherwise. It is more convenient to use the function (t.8x/6~) 

which has slope ±1 at x=O,l for any value of t. 

is plotted in Figure 4 for several temperatures. 

This function 

For t>t c 

we have the ordinary one-sublattice Bragg-Williams result 

- - -l 
dX I 6 + 1 J -1 ~ = LT x(l-x) 

( 3. 1) 

i.e. a smooth, structureless curve. 

Our incremental capacity diverges over the small intervals 

of x where the phases (3) and (12) coexist. On other 



hand, no singularities occ~r at values of the concentration 

where ordered arrangements of the particles are expected. On 

the contrary, at small values of T, there are minima of 

Cax/a~) near x=l/3 and 2/3, where ordered configurations exist. 

This is intuitively expected: a significant change in the 

chemical potential should be required to modify the structure 

at those concentrations. We thus confirm the conclusions of 

Berlinsky et al.'ijconcerning the meaning of minima and 

maxima of the incremental capacity. In our model, however, 

this function diverges over smalr ~-intervals, rather than 

only at isolated points. 

4. CONCLUSIONS 

In this paper we have studied the order-disorder phase 

diagram for a three-sublattice representation of a triangular 

lattice gas with a nearest-neighbor repulsive interaction. 

A "point" approximation was used as the first step towards a 

more sophisticated triangle cluster approximation, discussed 

in II. In spite of its simplicity the approximation used 

here has been able to account qualitatively for the experi­

mental features in the incremental capacity of systems like 

LixTiS 2 . 

We have found that minima of the incremental capacity 

occur at the concentrations where ordered structures form 

and divergences are associated with the coexistence of two 

es (one ordered and the other one disordered) and do not 

necessarily occur at concentrations that can be expressed as 

rational numbers of small denominator. Smooth maxima (e.g. 



at x = 1/2 at any temperature and at x ~ 1/6 and x ~ 5/6 

at very low temperatures in our model) can appear at concen~ 

trations that are not structurally meaningful and are not 

related to ordering effects. 
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APPENDIX 

The computation of the phase diagram and the thermo~ 

dynamic functions was performed in two stages. First, two 

of the sublattice probabilities were required to be equal. 

This case includes the phases (3) and (12). The free energy 

was then minimized at constants x and T with respect to the 

only one independent sublattice parameter. In the second 

stage, the (lll) phase was calculated by minimizing the grand 

potential at constant u and T with respect to the three sub-

lattice parameters, riow independent. 

In the first case, we have the reduced free energy of 

Eq. (2.5) with 

n = n ::: ~ ( 3x - n ) 8 y ex 

At the equilibrium configuration, we have 

(lf 

an ex 

with the restrictions 

::: 0 

For T > T = 3A, the disordered phase, defined by n =x, 1s c ex 

the solution. In general, Eq. (A.2) can be solved by a 

Newton-Raphson ~ iteration scheme. 

When the equilibrium configuration corresponds to the 

disordered phase, we must have 

(A.l) 

(A.2) 



(n =x) 
a 

3 T 1 
= - 2 + 2 x(l-x) > 0 

which lS true for T<Tc only if x<x or x>x+' where 

1 
2 ± cl 

4 

We need only to consider the region ·O<x<~ because of the 

particle~hole symmetry discussed in Section 2. For x<x_, 

(A.4) 

(A.5) 

Eq. (A.4) shows that the function f(n ) has a local minimum a 

at n =x. It turns out that thig is a global minimum only if 
a 

x<x
0

, where x
0 

is within 0.02 smaller than x . Inside the 

small interval x 0<x<x_, the global minimum is not at na=x 

but at the only other minimum at n >x, i.e. in the (12) phase. a 

When x <x<~ the function f(n ) has a local maximum at a 

na=x and two minima, one at na<x and the other at na>x. 

From physical reasoning, the solution at n >x must correspond a 

to the equilibrium configuration, since the a sublattice is 

the one being filled first at T=D. The Newton-Raphson proce-

dure converges when the initial point for n is taken to be 
a 

close to 1 or 3x, whichever is smaller. 

For each T, the interval of coexistence of the phases (3) 

and (12) is determined by plotting the reduced grand potential 

w = (A.6) 

as a function of ~· The (3) and (12) curves cross at a certain 

value of~ corresponding to tvJO values of x (=-aw/a~), one for 



each phase, that define the interval of coexistence. This 

method is equivalent to drawing the common tangent between 

versus~x curves for the two phases, but our procedure 

is computationally easier and more accurate. 

Finally, for the (111) phase, it is more convenient to 

start with the reduced grand potential 

where 

1 (n ) 2 + T [n ~n n 2 \) 3 \) \) 

For a given ~' at the equilibrium state we must have 

where 

y' (n ) = 
\) 

= 3x + y'(n·) = 0 
\) 

~n 
\) 

(A. 7) 

(A. 8) 

(A. 9) 

(A.lO) 

Equations (A.9) and (A.lO) can be solved by assigning values 

to 
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A = -3x + ~ 

and solving the equation 

(A.ll) 

by a Newton-Raphson procedure. For T<Tc' this equation has 

three different roots between 0 and 1 whenever A is such that 

g(x+)<A<g(x_), where x+ and x_ are defined in Eq. (A.5). In 

(111) phase, each sublattice probability must assume the 

value of a different root, The (111) phase happens to have 

lower free energy than the other phases at the same concentra-

tion. 
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FIGURE CAPTIONS 

1 Representation of the triangular lattice with its 
-~~~~~-

three interpenetrating sublattices. 

Figure 2 Phase diagram for the triangular lattice gas in 

the (x,T) plane. The dashed line is the locus of equal ~ree 

energies for the (3) and (12) phases. 

Figure 3 Reduced energy f as a function of concentration 

x for T = 0. 

Figure 4 Reduced incremental capacity multiplied by reduced 

temperature (T·ax/8~) as a function of concentration x for 

(a) T+O, (b) T=0.25, (c) T=0.5, (d) T=0.7. 
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Figure 1 
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